

Preliminary Look At Period 11 High PT Lepton Data

Simona Rolli

Electrons ID

- Documentation:
 - Web Page
 - CDF Note 8274, June 1st, 2006
 - o CDF Note 8614, November 27, 2006
 - Joint Physics Meeting Blessing, November 17, 2006

PerfIDia

- Code:
 - Instructions on how to run the code
- Results:
 - Period 9 data (): Runs 222529 to 228596 (MC sample zewkcd):
 - Mass distributions with comparisons between data and MC
 - Efficiencies and Scale Factors for data and MC (file not formatted!)
 - Post ShutDown data (June 2006 to September 2006): Runs 217990 to 222426 (MC sample zewkcd):

^ Q→ Google

- Mass distributions with comparisons between data and MC
- Efficiencies and Scale Factors for data and MC (file not formatted!)
- bhel0i Pre ShutDown data (September 2005 to June 2006); Runs 203819 to 212133; (MC sample zewkcd)
 - Mass distributions with comparisons between data and MC
 - Efficiencies and Scale Factors for data and MC (file not formatted!)
- bhel0h (December 2004 to September 2005): Runs 190697 to 203799 (MC sample zewkcd)
 - Mass distributions with comparisons between data and MC
 - Efficiencies and Scale Factors for data and MC (file not formatted!)
- bhel0d (2002 to August 2004): Runs 138425 to 186598 (MC sample zewkcd)
 - Mass distributions with comparisons between data and MC
 - Efficiencies and Scale Factors for data and MC (file not formatted!)

How to run the electron efficiency code on TopNtuple The code runs in two steps:

- A standalone executable runs on TopNtuple:
 - o 1.) main_lepid: basically reads in the command line arguments and then runs ana_lepid

Electrons ID: Samples

Dataset bhelmj: Runs 233133 to 237795

MC sample : zewkee (dataset zemtee as of June 20 2007)

GRL :perliminary GRL for Period 11

(http://www-cdf.fnal.gov/internal/dqm/goodrun/good.html)

Looked at 954 files (as of Friday, June 22):

Electron ID: Cuts

CEM Selection Cuts

Variable	Tight (CEM)
Region	== CEM
Fiducial	Fiducial == 1
E_T	$\geq 20 \mathrm{GeV}$
Track Z ₀	≤ 60 cm
Track p_T	$\geq 10 \text{ GeV}/c$
COT Ax. Seg.	≥ 3
COT St. Seg.	≥ 2
Conversion	≠ 1
Had/em	$\leq (0.055 + (0.00045 \times E))$
Isolation	≤ 0.1
LshrTrk	≤ 0.2
E/P	$\leq 2.0 \text{ unless } p_T \geq 50 \text{GeV}/c$
CES ΔZ	≤ 3.0 cm
Signed CES ΔX	$-3.0 \le q \times \Delta X \le 1.5$
CES StripChi2	≤ 10.0

Plug Selection Cuts

Variable	PHX	PEM
E_T	$\geq 20 { m GeV}$	$\geq 20 { m GeV}$
Pes2dEta	$1.2 \le \eta \le 2.8$	$1.2 \le \eta \le 2.8$
Had/Em	≤ 0.05	≤ 0.05
Pem3x3FitTow	≠ 0	$\neq 0$
Pem3x3Chisq	≤ 10	≤ 10
Pes5by9U	≥ 0.65	≥ 0.65
Pes5by9V	≥ 0.65	≥ 0.65
Isolation	≤ 0.1	≤ 0.1
ΔR	≤ 3.0 cm	$\leq 3.0~\mathrm{cm}$
PhxMatch	TRUE	-
N_{hits}^{Si}	≥ 3	-
$ z_0^{PHX} $	≤ 60 cm	-

Electron ID: Results

i Post SD	All errors are sta	tictical only				
i Post SD		usucai only		CEM		
	Per 9	bhelmi (Per 10)	MC (Zemted	i)	Bhelmi(P11)	zewkee
88 +/- 0.005	0.789 +/- 0.005	0.787 +/- 0.004	0.805 +/- 0.0	01	0.7731+\-0.0055	0.7983 +\-0.0009
77 +/- 0.006	0.978 +/- 0.006	0.978 +/- 0.005	N/A		0.9684 +\-0.007	N/A
16 +/- 0.004	0.818 +/- 0.005	0.816 +/- 0.004	0.830 +/- 0.0	1	0.8089 +\-0.0052	0.8267 +\-0.0009
86 +/- 0.005	0.984 +/- 0.006	0.984 +/- 0.004	N/A		0.9784 +\-0.006	N/A
15 +/- 0.003	0.914 +/- 0.003	0.914 +/- 0.003	0.917 +/- 0.	01	0.9064 +/- 0.0038	0.9090 +\-0.0009
96 +/- 0.004	0.996 +/- 0.004	0.996 +/- 0.003	N/A		0.9971 +\-0.004	N/A
45 +/- 0.003			0.947 +/- 0.0	01	0.94433+\-0.0009	0.9433 +\-0.0009
					0.9966 +\-0.0034	N/A
00 17 0.000	0.000 17 0.000	0.000 17 0.002	1071			
						PHX
08 +/- 0.007	0.700 +/- 0.008	0.702 +/- 0.006	0.758 +/- 0.0	0	0.7109+\-0.008	0.7472+\-0.0012
26 +/- 0.009	0.921 +/- 0.010	0.926 +/- 0.008	N/A		0.9513+\- 0.0107	NA
23 +/- 0.006	0.621 +/- 0.006	0.614 +/- 0.005	0.661 +/- 0.0	01	In progress	In progress
29 +/- 0.009			N/A		In progress	N/A
	77 +/- 0.006 16 +/- 0.004 36 +/- 0.005 15 +/- 0.003 96 +/- 0.004 45 +/- 0.003 00 +/- 0.003 08 +/- 0.007 26 +/- 0.009 23 +/- 0.006	77 +/- 0.006	77 +/- 0.006	77 +/- 0.006	77 +/- 0.006	0.9684 +\-0.007 0.978 +/- 0.006 0.978 +/- 0.005 0.816 +/- 0.004 0.818 +/- 0.005 0.984 +/- 0.004 0.984 +/- 0.004 0.984 +/- 0.006 0.978 +/- 0.004 0.830 +/- 0.007 0.9784 +\-0.0052 0.9784 +\-0.006 0.9784 +\-0.006 0.9784 +\-0.006 0.9784 +\-0.006 0.9784 +\-0.006 0.9784 +\-0.006 0.9784 +\-0.006 0.9784 +\-0.006 0.9784 +\-0.006 0.9784 +\-0.006 0.9784 +\-0.006 0.9064 +/- 0.003 0.9064 +/- 0.0038 0.9971 +\-0.004 0.9971 +\-0.004 0.9971 +\-0.0009 0.9966 +\-0.0034 0.9966 +\-0.0034 0.9966 +\-0.0034 0.9966 +\-0.0034 0.9966 +\-0.0034 0.9966 +\-0.0034 0.9966 +\-0.0034 0.9966 +\-0.0034 0.9966 +\-0.0034 0.9966 +\-0.0034 0.9966 +\-0.0034 0.9966 +\-0.008

Electron ID Z candidates

Electron ID Z candidates

Entries

Mean

RMS

2868

90.61

5.134

Electron Trigger

Web Page (under construction)

CDF Fast Navigator

- CDF Note 7939
- Code:
 - · Instructions on how to run the code
- - Post ShutDown data (June 2006 to September 2006): Runs 217990 to 222426 (MC s. zewkcd):

Google

S zewkcm - Google Search Fermilab Telephone Dire...

Number of events for NoSi GRL

PerfIDia

- Number of events for Si GRL
- o bhel0i Pre SD
- bhel0h
- bhel0f

How to run the electron trigger efficiency code on TopNtuple

There are two steps in producing trigger efficiencies (tracking only for the moment):

 First step: a standalone (release dependent code runs on TopNt). Here are the instructions: newrel -t 6.1.4 testrel; cd testrel: addpkg TopMods; setenv USESHLIBS yes; gmake TopMods.nobin addpkg JetUser jetCorr06b gmake JetUser.lib LINK_SHARED_ROOT=yes cvsroot zoom addpkg ZMutility addpkg Exceptions gmake ZMutility.all USESHLIBS=1 gmake Exceptions.all USESHLIBS=1 in the test release add the following files (tar file with them here: ana.cc ana.hh

Electron Trigger: Tracking

1 electron with $E_T > 25 GeV$ $E_T > 25 GeV$ reject cosmic events

Table: Offline W selection.

Electron Variables	Current baseline cuts
E_T	> 20 GeV
ρ_T	> 10 GeV/c
N _{SL} with 5 hits	≥ 3
Natereo with 5 hits	≥ 2
Fiducial	1
Had/Em	< 0.055 + 0.00045E
L _{shr}	< 0.2
E/p	< 2 (for $p_T < 50 GeV$)
Zvertex	< 60 cm
$ \Delta X $	$-3.0 < Q_{trk} \Delta X < 1.5 \text{ cm}$
ΔZ	< 3 cm
χ^2_{strip}	< 10
Conversion	≠ 1 (not)

L1 Tracking Efficiency

$$\epsilon$$
(L1_XFT_PT8) = $\frac{\text{numW \& passed L1_CEM8_PT8}}{\text{numW}}$

numW means the number of W candidates that passed the W-NOTRACK path.

L2 Tracking Efficiency

At L2, there is no additional tracking done except for receiving the XFT information from L1.

$$\epsilon(\text{L2_XFT_PT8}) = \frac{\text{numW \& passed L1_CEM8_PT8 \& passed L2_CEM16_PT8}}{\text{numW \& passed L1_CEM8_PT8}}$$

Table: Offline baseline cuts for central electrons.

L3 Tracking Efficiency

$$\epsilon(L3-PT9) = \frac{\text{numW \& passed L1_CEM8_PT8 \& L2_CEM16_PT8 \& L3_CEM18_PT9}}{\text{numW \& passed L1_CEM8_PT8 \& L2_CEM16_PT8}}$$

Electron Trigger: Calorimeter

L2 Calorimeter Efficiency

- Require at least 1 electron satisfying the baseline cuts and E_T > 18GeV.
- Use ELECTRON_CENTRAL_18_NO_L2 path.
- Efficiency reaches 100% at about 25 GeV.

$$\epsilon(\text{L2_CEM16}) = \frac{\text{numEl \& passed L1_CEM8_PT8 \& L2_PS \& L2_CEM16}}{\text{numEl \& passed L1_CEM8_PT8 \& L2_PS}}$$

L3 Calorimeter Efficiency

- Use the calibration dataset(blpc).
- Use ELECTRON_CENTRAL_8_NO_L2 path.
- Efficiency reaches 100% at about 20 GeV.

$$\epsilon(\text{L3_CEM18}) = \frac{\text{numEl \& passed EL_CENT_8_NO_L2 \& L2_CEM16 \& L3_CEM18}}{\text{numEl \& passed EL_CENT_8_NO_L2 \& L2_CEM16}}$$

Electron Trigger: Results

Trigger	Period 9	Period 10
L1_XFT_PT8	0.9651(6)	0.9677(5)
L2_XFT_PT8	0.9992(1)	0.9993(1)
L3 tracking	0.9954(2)	0.9924(2)
Total Tracking	0.9598(7)	0.9596(6)

Trigger	Period 9	Period 10A	Period 10B
L1_XFT_PT8	0.9651(6)	0.9673(7)	0.9650(29)
L2_XFT_PT8	0.9992(1)	0.9993(1)	0.9992(5)
L3 tracking	0.9954(2)	0.9932(3)	0.9968(9)
Total Tracking	0.9598(7)	0.9600(8)	0.9611(31)

Period 11	
0.9688(4)	
0.9988(4)	
0.9935(4)	
0.9614(4)	

Electron Trigger: Results

L2_CEM16 calorimeter efficiency

$$\epsilon = rac{1}{1 + e^{-eta(E_T - lpha)}}.$$

Everything looks fine

Muons

Dataset bhelmi: Runs 233133 to 237795

MC sample : zewkem

GRL :Preliminary P11 GRL

~100 files out of 729

ID and Reco preliminary results
Trigger Efficiencies not evaluated at this time

Muon ID Efficiency: ID Cuts

For all events:

No cosmic tag.

For all muon types (including stubless muons):

```
\begin{array}{rcl} P_T &>& 20~{\rm GeV/c} \\ E_{EM} &<& 2+{\rm max}(0,(p-100)\cdot 0.0115)~{\rm GeV} \\ E_{HAD} &<& 6+{\rm max}(0,(p-100)\cdot 0.028)~{\rm GeV} \\ E_T^{isol.}/P_T &<& 0.1 \\ {\rm Number\ of\ axial\ SL\ with\ } \geq 5~{\rm hits\ } \geq & 3 \\ {\rm Number\ of\ stereo\ SL\ with\ } \geq 5~{\rm hits\ } \geq & 2 \\ & |z_0| &<& 60~{\rm cm} \\ {\rm Tracks\ w/\ no\ silicon\ hits:\ } |d_0| &<& 0.2~{\rm cm} \\ {\rm Tracks\ w/\ silicon\ hits:\ } |d_0| &<& 0.02~{\rm cm} \\ \end{array}
```

Additionally for tight CMUP muons:

```
|\Delta x_{CMU}| < 7 \text{ cm}

|\Delta x_{CMP}| < 5 \text{ cm}

No bluebeam muons, run < 154449
```

Additionally for tight CMX muons:

```
|\Delta x_{CMX}| < 6 \text{ cm}
|\Delta x_{CMX}| < 150144
No miniskirt or keystone muons, run < 190697
No muons in wedge 14 west, runs \geq 190697 and \leq 209760
```

Table 1: Standard muon ID cuts for 6.1.4 data MC.

Fiducial cuts

For CMUP muons:

For CMX muons:

 $\begin{array}{ccc} \rho_{COT} &>& 140~\mathrm{cm} \\ &&&&\\ Fiducial~\mathrm{distance~from~CMX:} \\ &&&&\\ x\text{-fid} &<& 0~\mathrm{cm} \\ &&&&\\ z\text{-fid} &<& -3~\mathrm{cm} \\ &&&&\\ No~\mathrm{muons~from~keystone~region~for~run} &< 190697 \\ No~\mathrm{muons~from~miniskirt~region~for~run} &< 190697 \\ No~\mathrm{muons~wedge~14~west~for~runs} &\geq 190697~\mathrm{and} &\leq 209760 \\ \end{array}$

Table 2: Suggested muon fiducial cuts for tight muons in release 6.1.4.

Arches: $\begin{array}{l} \text{Arches:} \\ 0^{\circ} \leq \phi \leq 75^{\circ} \text{ or } 105^{\circ} \leq \phi \leq 225^{\circ} \text{ or } 315^{\circ} \leq \phi < 360^{\circ} \\ \text{Additionally, for runs } 190697 \text{ - } 209760, \text{ remove:} \\ 210^{\circ} < \phi \leq 225^{\circ} \text{ if } \eta < 0 \\ \text{Keystone:} \\ 75^{\circ} < \phi < 105^{\circ} \text{ and } \eta < 0 \\ \text{Miniskirt:} \\ 225^{\circ} < \phi < 315^{\circ} \\ \end{array}$

Table 3: Cuts on ϕ for distinguishing parts of the CMX detector when determining reconstruction efficiencies.

ID Efficiency Calculation

- A first leg must be a CMUP or CMX muon passing all the cuts given in Tables 1 and 2.
- A second leg must be a muon with a CMUP or CMX stub and satisfy:
 - − P_T > 20 GeV.
 - fiducial requirements in Table 2.
- The event must not have a cosmic tag.
- The z_0 of the two legs must pass: $|z_0^{(1)} z_0^{(2)}| < 4$ cm.
- The invariant mass of the two tracks must pass: 81 < m(μ⁺μ⁻) GeV/c² < 101.

We then test the second leg to determine if it passes each of the muon ID cuts given in Table 1.

CMUP ID Efficiency

We are using $Z \to \mu^+\mu^-$ events with one identified leg (CMUP or CMX). This first leg must pass all the ID cuts and must match to level 1 trigger information. We are then looking if the second leg pas ID cuts in question.

bhmumj

zewkem

	Efficiency (%)				Count	Efficiency (%)	Efficiency (%)	
	bhmu0i2 p8	bhmumi p9	zewkmm	bhmumi p10	zemtdm	502		
E _{EM} cut	96.35 ± 0.36	97.36+0.320.36	96.22+0.08	97.68+0.23_0.26	96.20+0.06	487	$97.01^{+0.79}_{-0.97}$	$96.23^{+0.06}_{-0.07}$
E _{HAD} cut	97.91 ± 0.27	98.32+0.25	98.31+0.05	98.45+0.19-0.22	98.30+0.04	493	-0.80	$98.33^{+0.04}_{-0.04}$
COT hits cut	99.96 ± 0.04	99.93+0.040.10	99.99+0.00	99.95+0.040.07	100.0+0.00	502	$100.00^{+0.00}_{-0.37}$	$99.99^{+0.00}_{-0.00}$
d _o cut	99.71 ± 0.10	99.50+0.12 -0.17	99.87+0.02	99.56+0.100.13	99.72+0.0	494	$98.41^{+0.57}_{-0.80}$	$99.84^{+0.01}_{-0.01}$
Isolation cut	96.79 ± 0.34	96.90+0.35	97.24+0.07		97.31 ^{+0.0} - _{-0.05}	482		$96.80^{+0.06}_{-0.06}$
Δx _{CMU} cut	99.60 ± 0.12	99.75+0.100.13	99.99+0.00	99.51+0.12	99.99+0.0	496		$99.99^{+0.00}_{-0.01}$
Δx _{CMP} cut	98.52 ± 0.23	98.04+0.28	99.43+0.03	98.45+0.19	99.42+0.0	497	$99.00^{+0.43}_{-0.69}$	$99.44^{+0.02}_{-0.03}$
All above cuts	89.53 ± 0.58	90.44+0.53	91.49+0.12	91.08+0.440.48	91.41+0.09	445	$88.65^{+1.49}_{-1.63}$	$91.07^{+0.10}_{-0.10}$
All cuts excl. isol.	92.34 ± 0.51	93.08+0.500.52	93.94+0.10	93.89+0.37 -0.41	93.76+0.08	463		$93.93^{+0.08}_{-0.08}$
Sliding isol. cut	97.40 ± 0.30	97.97 ^{+0.25} -0.29	97.66+0.06	97.71 ^{+0.23} -0.26	97.77+0.05	489	****	$97.59^{+0.05}_{-0.05}$
All cuts (sliding isol.)	90.07 ± 0.57	91.43 ^{+0.53} -0.54	91.87+0.12	91.86+0.45	91.82+0.08	452		$91.79^{+0.10}_{-0.10}$
							21.21	400 001000

CMX ID Efficiency

Shmumj

zewkem

	Efficiency (%)					Count	Efficiency (%)	Efficiency (%)
	bhmu0i2 p8	bhmumi p9	zewkmm	bhmumi p10	zemtdm	270		
E _{EM} cut	96.59 ± 0.44	97.34+0.390.44	96.32+0.10	97.24+0.34	96.40+0.070.08	261	$96.67^{+1.09}_{-1.45}$	$96.35^{+0.08}_{-0.09}$
E _{HAD} cut	98.14 ± 0.33	97.88+0.340.40	97.88+0.08_0.08	98.03+0.29_0.30	97.90+0.06	261	$96.67^{+1.09}_{-1.45}$	$97.83^{+0.07}_{-0.07}$
COT hits cut	100.0 ± 0.00	100.0+0.000.11	100.0+0.000.01	99.92+0.05	99.99+0.00_0.01	270	$100.00^{+0.00}_{-0.68}$	$99.98^{+0.01}_{-0.01}$
d ₀ cut	99.64 ± 0.15	99.76+0.11_0.19	99.88+0.020.02	96.85+0.35	99.78+0.02	269	$99.63^{+0.30}_{-0.83}$	$99.88^{+0.01}_{-0.02}$
Isolation cut	97.85 ± 0.36	97.03+0.400.48	97.43+0.080.09	96.85+0.35	97.40 ^{+0.07} -0.07	263	$97.41^{+0.98}_{-1.36}$	$97.08^{+0.07}_{-0.08}$
Δx _{CMX} cut	99.64 ± 0.15	99.39+0.180.26	99.83+0.020.03	99.88+0.06	99.86+0.01_0.02	270	$100.00^{+0.00}_{-0.68}$	$99.85^{+0.02}_{-0.02}$
All above cuts	92.22 ± 0.66	92.31+0.710.76	91.72+0.140.15	92.11 ^{+0.51} -0.56	91.76+0.11_0.11	244	$90.37^{+1.72}_{-2.19}$	$91.40^{+0.12}_{-0.12}$
All cuts excl. isol.	94.08 ± 0.58	94.85+0.510.57	93.99+0.13_0.13	94.83+0.45	94.04+0.10	251	$92.96^{+1.47}_{-1.85}$	$94.00^{+0.11}_{-0.10}$
Sliding isol. cut	98.38 ± 0.31	97.40 ^{+0.38} -0.45	97.81+0.08_0.08	97.83+0.29	97.91+0.06	266	$98.52^{+0.75}_{-1.20}$	$97.79^{+0.06}_{-0.07}$
All cuts (sliding isol.)	92.70 ± 0.64	92.62+0.700.67	92.06+0.14	92.98+0.50_0.53	92.21+0.110.12	247	$91.48^{+1.78}_{-2.13}$	$92.04^{+0.11}_{-0.12}$

Reconstruction Efficiency

The reconstruction efficiency is defined as the <u>probability to find a muon stub and link</u> it to a track. First, to know whether we should find a stub or not we have to know that the muon is fiducial in any of the muon chambers. We use the <u>MuonFiducialTool</u> class for this purpose. We define a track as being fiducial in a given muon system if it passes the cuts defined in Tables 2 and 3 for that system.

Events Selection

No cosmic tag and 2 tracks passing the following:

- Oppositely charged.
- $|z_0^{(1)} z_0^{(2)}| < 4$ cm.
- 81 $\text{GeV}/c^2 < m(\mu^+\mu^-) < 101 \text{ GeV}/c^2$
- The first leg must be a reconstructed CdfMuon passing all the ID and fiducial cuts given in Tables 1 and 2. It must also match to the level 1 trigger information.
- The second leg must be fiducial in both the CMU and CMP sub-detectors (or the CMX sub-detector) and satisfy:
 - $-P_T > 20 \text{ GeV}.$
 - $-E_{EM} < 1.5 \cdot (2 + \max(0, (p 100) \cdot 0.0115)) \text{ GeV}$
 - $-E_{HAD} < 1.5 \cdot (6+\max(0, (p-100) \cdot 0.028) \text{ GeV}$

ε_{Reco} = #tracks fiducial and linked to a stub # tracks fiducial

Reconstruction Efficiency

The first leg must pass all the ID and Fid. cuts and must match to the level 1 trigger information. If the second leg is Fiducial, and pass " P_T , E_{EM} , E_{HAD} " cuts, we examine this track to see if is linked to a muon stub or not.

DATA	bhmu0h	bhmu0i	bhmu0i2 p8	bhmumi p9	bhmumi p10	
CMUP	91.63 ± 0.34	91.78 ± 0.42	93.04 ± 0.47	92.70+0.490.53	91.22 ^{+0.46} -0.47	
CMX	97.47 ± 0.25	97.39 ± 0.31	96.67 ± 0.44	95.09+0.570.60	95.99 ^{+0.37} _{-0.41}	
Arches	99.07 ± 0.18	98.68 ± 0.25	98.91 ± 0.29	98.05+0.37_0.46	98.47 ^{+0.29} -0.3	
Miniskirt	92.57 ± 0.94	92.62 ± 1.18	87.96 ± 1.81	82.09+2.182.50	85.59 ^{+1.62} -1.9	
Keystone	91.67 ± 2.13	94.50 ± 2.18	95.77 ± 2.39	93.65+3.034.78	92.63 ^{+2.49} -3.16	

Efficiency (%)							
MC	zewk9m	zewkbm	zewkmm	zemtdm			
CMUP	97.57 ± 0.03	97.43 ± 0.06	97.42+0.06	97.58 ^{+0.05} -0.0	5		
CMX	99.61 ± 0.02	99.62 ± 0.03	99.65+0.03_0.04	99.64+0.02	3		
Arches	99.79 ± 0.02	99.80 ± 0.03	99.80+0.03_0.03	99.80+0.02			
Miniskirt	99.06 ± 0.06	99.07 ±0.12	99.26+0.10_0.12	99.17+0.09	9		
Keystone	98.99 ± 0.13	98.90 ± 0.26	98.70+0.300.33	98.90 ^{+0.21} -0.2	3		

bhmumj

-1	
	Efficiency (%)
	$90.88^{+1.21}_{-1.32}$
	$94.49^{+1.32}_{-1.81}$
	$99.06^{+0.60}_{-1.25}$
	$76.47^{+5.95}_{-7.33}$
	$88.89^{+8.77}_{-21.31}$

zewkem

	Efficiency (%)
	$97.60^{+0.05}_{-0.05}$
	$99.61^{+0.03}_{-0.03}$
	$99.79^{+0.02}_{-0.03}$
ı	$99.05^{+0.10}_{-0.1}$
	$98.96^{+0.70}_{-0.24}$

Reco and ID SF

ID Scale Factor						
Category	bhmu0i	bhmu0i2 p8	bhmumi p9	bhmumi p10		
CMUP all cuts.	0.9753 ± 0.0052	0.9752 ± 0.0064	0.9885+0.0059	0.9964+0.0049		
Excl. Isol.	0.9854 ± 0.0044	0.9821 ± 0.0055	0.9908+0.0054	1.0014+0.0040		
Sliding Isol. cut	0.9804 ± 0.0050	0.9952 ± 0.0031	1.0031+0.00270.0030	0.9993+0.0024		
CMX all cuts	1.0012 ± 0.0057	1.0001 ± 0.0073	1.0065+0.0078	1.0038+0.0057		
Excl. Isol.	1.0010 ± 0.0049	0.9989 ± 0.0063	1.0092+0.0056	1.0085+0.0049		
Sliding Isol. cut	1.0020 ± 0.0056	1.0034 ± 0.0032	0.9957+0.0040	0.9992+0.0030		

bhmumj P11

_
$0.9734^{+0.0164}_{-0.0180}$
$0.9819^{+0.0131}_{-0.0140}$
$0.9982^{+0.0070}_{-0.0090}$
$0.9887^{+0.0189}_{-0.0240}$
$0.9889^{+0.0157}_{-0.0197}$
$1.0074^{+0.0077}_{-0.0123}$

RECO Scale Factor					
	bhmu0i	bhmu0i2 p8	bhmumi p9	bhmumi p10	
CMUP	0.9406 ± 0.0043	0.9550 ± 0.0049	0.9515+0.0051	0.9348+0.0047	1
CMX	0.9777 ± 0.0031	0.9703 ± 0.0044	0.9542+0.0057	0.9634+0.0037	1
Arches	0.9889 ± 0.0025	0.9911 ± 0.0029	0.9824+0.0037	0.9867+0.00290.0030	
Mini./Key.	0.9386 ± 0.0106	0.9024 ± 0.0157	0.8484+0.0193	0.8758+0.0158	

bhmumj P11

$0.9311^{+0.0125}_{-0.0136}$
$0.9485^{+0.0132}_{-0.0182}$
$0.9926^{+0.0060}_{-0.0126}$
$0.7910^{+0.057}_{-0.057}$

Conclusions

- Final results on July 11th
 - All data
 - MC done
- Plan to bless by July 25th
 - In time for LP